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Abstract 
Model checking is shown to be an effective 

tool in validating the behavior of a fault tolerant 
embedded spacecrafi controllel: The case study 
presented here shows that by judiciously abstract- 
ing away extraneous complexity, the state space of 
the model could be exhaustively searched allowing 
critical functional requirements to be validated 
down to the design level. Abstracting away detail 
not germane to the  problem of interest leaves by 
definition a  partial specification behind. The suc- 
cess of this procedure shows that  it is feasible  to 
effectively validate a  partial Specification with this 
technique. Three anomalies were found  in  the sys- 
tem. One was an error in the detailed require- 
ments, and the  other  two were missing/ambiguous 
requirements. Because the method allows valida- 
tion of partial specifications, it  is  also  an effective 
approach for maintaining fidelity between a  co- 
evolving specification and an implementation. We 
also show that two of the three anomalies were 
found  in  the implementation, demonstrating the 
overall effectiveness of the process and the im- 
portance of a good software design. 

The research described in this paper was  carried out in part 
by the  Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics 
and Space Administration, and in part by West Virginia Uni- 
versity under NASA cooperative agreement #NCC 2-979. Ref- 
erence herein to any specific commercial product,  process, or 
service by trade, name, trademark, manufacturer, or other- 
wise, does not constitute or imply its endorsement by the 
United States Government, the  Jet Propulsion Laboratory, 
California Institute of Technology or West Virginia University 

Jet  Propulsion  Laboratory I California Institute of Technol- 
om,  
MS 125-233  Pasadena, CA 91109. 

Computing  Sciences  Research,  Bell  Laboratories,  Lucent 
Technologies,  Murray  Hill, NJ 07974 

1 Introduction 
This paper describes a practical application of 

model checking for validating the requirements for 
a complex embedded  system. The case study de- 
scribed here is of a dually redundant spacecraft 
controller, in  which a checkpoint and  rollback 
scheme is used to provide fault tolerance during 
the execution of critical control sequences. The 
challenge given to us and the purpose of this study 
was  to  determine if model checking could be used 
to uncover errors in  an existing design specifica- 
tion for a space craft system.  To this end the proj- 
ect manager  supplied us with  such a specification. 

The software requirements specification for 
the spacecraft specifies the required behavior for 
the checkpoint and rollback scheme.  However,  the 
validity of these requirements could not be deter- 
mined  through inspection. In other words,  it  was 
not possible to determine whether the behavior 
described in these requirements would provide the 
desired level of fault tolerance. More importantly, 
testing of the eventual implementation would  not 
necessarily  provide this validation either, due to 
the difficulty of ensuring test case coverage for all 
possible fault occurrence scenarios. 

The approach described here uses a formal 
automata-based  model derived from the specifica- 
tion. We used  various  high-level safety properties 
to validate the generalized system model.  Key 
system functional requirements were  then  vali- 
dated by defining corresponding liveness proper- 
ties in linear temporal logic, which  were  required 
to be satisfied when the system responds to errors. 
We used  the  model checker Spin [2] to identify 
traces in the model for which these properties were 
violated. 

The work described in this paper forms part of 
an  on-going investigation into lightweight formal 
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methods for V&V of requirements specifications. 
We use the term ‘lightweight’ to indicate that the 
methods  can be used  to perform partial analysis on 
partial specifications, without a commitment to 
developing and baselining complete, consistent 
formal specifications. The formal methods are 
used to  model critical chunks of  an informal speci- 
fication, to check that key properties hold. The aim 
is to find errors, rather than to prove correctness. 
Application of the methods is driven  by the .needs 
of the project, and is used as a modeling  tool  to 
answer questions that arise during verification and 
validation. 

The paper is organized as follows. Section 2 
provides a motivation for the case study  by  briefly 
surveying existing approaches to requirements 
validation and demonstrating why these ap- 
proaches do not provide the desired level of assur- 
ance. We introduce the distinction between 
verifying requirements through completeness and 
consistency checking, and validating requirements 
against real  world properties (‘claims’) that should 
follow if the statement of the requirements is cor- 
rect. 

Section 3 introduces the dually redundant sys- 
tem,  and  shows  how it was expressed as a FSM. 
We show  how the system  behaves as a communi- 
cations system,  making it particularly amenable to 
analysis using the model checker Spin. 

Section 4 describes the steps that were  taken to 
optimize the model, in order to reduce the size of 
the state space. We show  how the model  was  par- 
titioned into five separate fault scenarios, and ex- 
plain  in detail how one of these scenarios was 
checked. We discuss the process of checking the 
model  against claims expressed as linear temporal 
logic formulae. Section 5 presents the results of the 
analysis. 

Section 6 provides a discussion of the results, 
including a reflection on the benefits seen in the 
case study. The importance of partitioning the 
model in order to make the analysis feasible is dis- 
cussed, along with  some reflection on the resulting 
limitation of the analysis (‘partial analysis of  par- 
tial specifications’). 

Section 7 presents conclusions and describes 
our future work. A short overview of the theoreti- 
cal basis for the use of the LTL and Buchi auto- 
mata is provided in appendix A. 

2 Background 
Requirements validation is the process of de- 

termining that the specified requirements capture 
the real  world needs of the stakeholders. For real- 
time control systems,  this involves checking that 
the specified behavior  will  in fact provide safe and 
effective control, without introducing any undesir- 
able effects. For reasonably complex systems, va- 
lidity of the requirements is hard to establish. 
Informal methods  only provide a very basic level 
of assurance, by  imposing a structure on the speci- 
fication that facilitates inspection  by domain ex- 
perts. Formal  methods  have the potential to 
provide a much greater level of assurance, through 
the construction of a precise model of the require- 
ments, which can be  tested against domain proper- 
ties. 

A number of formal modeling tools are avail- 
able that are applicable to software systems. Heit- 
meyer  and Mandrioli [3] provide an excellent 
overview of the current state of the art. Here we 
concentrate on state machine  models,  which can be 
used to test safety and liveness properties. 

RSML [ 1, 31 and  SCR [5] have  both been very 
successful at providing static analysis techniques 
for checking completeness and consistency of 
specifications expressed as deterministic state ma- 
chines. However, fault tolerant systems are inher- 
ently non-deterministic, that is, the transition 
schemes are relational not functional. Systems 
with inherent non-determinism are not easily ame- 
nable to analytic static evaluation methods. Sys- 
tems that can be partitioned into a deterministic 
and a non-deterministic part can apply tools such 
as RSML or SCR to validate deterministic compo- 
nents. For example, Easterbrook [6] has reported 
using the SCR tool in this way to validate the Fault 
Detection, Isolation  and  Recovery (FDIR) re- 
quirements for a spacecraft bus controller. The 
deterministic part  was  modeled  in SCR, and then 
extended to include non-deterministic elements 
(i.e. fault occurrences) using the Spin model 
checker [2]. Such a procedure would be suggested 
for example when  an otherwise deterministic sys- 
tem had to be shown to be resilient under (non- 
deterministic) fault injection. 

An analysis based methodology  such as RSML 
or SCR requires determinism in the underlying 
model to prove requirements completeness and 
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consistency.  In contrast, state space exploration 
methods  (‘model checking’) are operational in na- 
ture rather than analytic. They allow functional 
requirements to be validated over non- 
deterministic finite state machines using optimized 
reachability schemes. By incorporating functional 
requirements in a non-deterministic model,  re- 
quirements properties can be validated. Manna and 
Pneuli [6] have  shown that virtually any expressi- 
ble requirements property can be represented as a 
safety, precedence, or liveness property using the 
Linear Temporal  Logic (see appendix A). 

Three such  model checkers have  been  widely 
used for verification of low-level designs of both 
hardware and software, and communication proto- 
cols. The Murphi model checker has a rich support 
for temporal logic and allows invariants to be ex- 
pressed in the model  to be checked as the state 
space exploration evolves. It supports a single site 
model  only,  which is a disadvantage in the valida- 
tion of concurrent systems. The Symbolic Model 
Verifier  (SMV)  has  been applied successfully to 
communication protocols [8]. SMV can validate 
synchronous and asynchronous systems against a 
system specification specified in the temporal logic 
CTL [lo] [2]. It allows for non-determinism in the 
specifications and for concurrency in the model 
within procedures. It supports rich  temporal  logic 
specifications but does not support complex data 
structures, making it difficult to build a complete 
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low level model. Both SMV and Murphi were de- 
signed for validating hardware  systems. The Spin 
model checker was  designed for verification of 
communication protocols, and  provides support for 
a basic set of software data structures. 

Each of the three model checkers permits a 
rich set of temporal logic formulae to be incorpo- 
rated into the modeling system. We chose to use 
the Spin model checking system for this study  be- 
cause it (a) was designed to validate software 
communications protocols (a) is algorithmic in 
nature (c) supports data structures allowing detail 
where appropriate (d) incorporates linear temporal 
logic primitives allowing functional requirements 
to be validated over the model (e) and, signifi- 
cantly, because the modeling system can be used to 
validate functional requirements over traces from 
the implementation. 
3 DRS  High  Level  Model  Description 

The case study described here is a Dually  Re- 
dundant System (DRS) for a spacecraft controller, 
consisting of two hardware platforms running 
identical software to maximize  system reliability 
and  availability. The systems exchange information 
to synchronize software operation. One of the sys- 
tems has control of the system bus and is called the 
prime  string. The other,  known as the online 
string, provides a backup, executing in synchroni- 
zation or at  most  within  one second of the prime 
string. Information is exchanged  between the two 
systems by the synchronous (rendezvous) commu- 
nication of a 32-word table, the State Table  Broad- 
cast (STB), broadcast by the prime string once per 
second. The online string uses this to keep itself in 
synchronization with the prime string. 

The system executes high priority programs 
called critical sequences that must be tolerant of 
arbitrary faults. To this end, the strings use a vari- 
ant of the checkpoint and rollback process found to 
work well in industrial applications [ll].  Check- 
points correspond to completed transactions in the 
executable code. Such a completion is referred to 
as a commit operation, meaning that if a system 
crash occurs, system operations could be rolled 
back to the point where the  commit occurred and 
proceed from here. The spacecraft controller works 
analogously except that the checkpoints are re- 
ferred to as markpoints, and are hard coded into 
the executing program. 
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For example, consider the retrieval and return Meaning Value Flag 
of a soil sample by a remote robot, Successful re- 

which would be another markpoint. If any opera- 
CS inactive and  not sus- 0 of the sample that was just retrieved, at the end of 
CS active or suspended 1 CM The next group of instructions might be the storage 
CS  not executing 0 this process would be delineated with a markpoint. 
CS executing 1 cs be repeated. The code ending in the completion of 
Cleared 0 trieval of the sample is an operation that need  not 
Fault 1 SFFJ 

pended 
tion were interrupted by the occurrence of a fault, Table 2: Communication Flags 
the system  would repair the fault; roll back control 
to the beginning of the last markpoint; and  con-  fined a communications protocol as a five compo- 
tinue execution from there.  It  would not be neces-  nent specification for how  communication is to be 
sary to waste battery power or time to retrieve carried out in an error free way  among two or more 
another sample if that was  already achieved. This separate elements. For the mark  and rollback proc- 
paper focuses on the validation of the fault toler- ess, these properties are: 
ance provided  by this mark  and rollback process. 1. The service  provided by the protocol is to keep 

The fault containment requirements specify the prime and the online systems  in synchroni- 
that fault protection shall operate only in the prime  zation. This is done so that the online string 
string. While the prime string is repairing a fault, can take over quickly should the prime system 
the online string must stop executing its copy of become inoperable. 
the critical sequence and  wait for the STB to tell it 2. The  environmental  assumptions are that the 
that the fault has  been repaired, thereby signaling it prime string interacts with  an entity that pro- 
to proceed  with the critical sequence. vides information about faults. 

The rollback requirements specify that three 3. The major  vocabulary consists of the variables 
full seconds of execution time shall be allowed to SFP, CS, and CM. SFP is the Spacecraft Fault 
pass after a new  markpoint is encountered by the Protection flag. When  this flag  is set, the sys- 
software before the new  markpoint is recognized tem  has experienced a fault that has  not  yet 
as a legitimate rollback point. This is because the been repaired. The CS flag is set  in the prime 
system controls external elements that are mostly string and in the backup string when the criti- 
mechanical in nature. Accordingly, the software is, cal sequence is active i.e. running in each re- 
in general, always ahead of the hardware. The spective string. The CM flag is set to indicate 
three-second delay gives any mechanical tasks a that the critical sequence is active or in 
chance to be completed, and for any faults that standby pending the repair of a fault and  ac- 
occurred to be properly logged, before the previous cordingly to remind the strings that when  an 
section of the critical sequence can be considered interfering fault is fixed, the suspended critical 
successfully complete. To  implement this require- sequence needs to  be restarted at the last valid 
ment, each new  markpoint is aged each second by  aged  markpoint. 
one second  by  moving it one level deeper in a 4. The three protocol flags each use single bit 
three-level buffer.  Only  markpoints that have encoding, as shown  in  Table 2. 
reached the bottom will be eligible for use in the 5 .  The procedure rules are most  complex to deal 
rollback process. Figure 1 shows a high level snap-  with, the hardest to  specify, the most difficult 
shot of normal critical sequence operation in  both to validate. Most of the validation  work occurs 
strings. here. Examples from the mark  and rollback 
4 Validation  Procedure support application are that the protocol vari- 
4.1 Modeling ables SFP, CM, and CS are to be broadcast 

The first step was  to produce a state model of once each second to the online string and actu- 
the DRS system. To  model the specified behavior, ally also back to the prime string by the prime 
we treated the mark  and rollback process as a string to allow the prime string to check its 
communications system.  Holzmann [12] has de- own synchronization. 

- 4 -  



The initial model  was represented using state- 
charts [13]. Figures 1 and 2 show portions of the 
statecharts for the prime  and online strings respec- 
tively. 

In the case study  presented  here, certain types 
of faults are of such a nature that they can be re- 
paired  by the prime string. When a fault occurs, 
the three protocol flags (CS, CM, SFP) change 
state from (1, 1, 0) to (0, 1, 1). This information is 
broadcast to the online string once per second. 
When the online string sees the SFP flag is set, it 
suspends operation of the executing critical se- 
quence and waits for the prime string to repair the 
fault. Once the fault is repaired, the prime string 
can roll back to the last valid  markpoint and re- 
sume processing. The online string will see the 
new SFP flag is reset in the STB message, rollback 
to the aged broadcast markpoint  and restart its 
copy of the critical sequence. 

This example shows a small subset of the ac- 
tual elements and their procedure rules,that belong 
in each category. The complete protocol specifica- 
tion is in excess of 80 pages. 
4.2 Estimation of State  Space  Size 

Once an initial model is obtained, the state 
space size must be estimated, in order to assess the 
potential for automated validation. This was done 
by estimating the number of substates needed in 
the Spin model to implement each state shown on 
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v 

Figure 1: A partial statechart for the DRS 
prime string 

the statecharts. For example, the full statechart for 
the prime string has 16 states and each could be 
implemented  with,  say, 4 substates giving a state 
space of 4 x 4 x ... x 4 = 232. 

The full statechart for the online string has 14 
states. Assuming 4 substates for each gives 4 X 4 X 

... x 4 = 228 states. The rendezvous communica- 
tion contains 32 data elements, 5 of  which are un- 
used leaving a total of  27 elements. Each of these 
remaining  27 is at least a binary flag. This gives 2 
x 2 x 2 . .. x 2 = 227 states as a minimum. This 
contributes to the state space of the online string, 
giving 228 x 227 = 255 states total. 

Both  strings operating as one system will  have 
a state space of  

(232 states prime string) x (255 states online 
string) = 287 states. 

With a CPU that executes 1 state per micro- 
second, the  system will traverse its reachability 
graph in about 10l2 years. 

The problem of interest here is to discover the 
failure modes of this system. To be able to do this 
we  must  reduce the state space down to an  man- 
ageable size by abstracting away states that are not 
germane  to the operation we are interested in, 
namely (a) the repair of faults (b) the rollback pro- 
cess and (c) the synchronization between the prime 
and the online (backup) systems. The result is a 
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Figure 2: A partial statechart for the DRS on- 
line string 
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partial specification, but  which  has  enough detail 
left to  partially validate the properties of interest. 
4.3 Reducing  the  state  space 

There are a number of ways  in  which the state 
space can be reduced to a size amenable to model 
checking. Firstly, the functional requirements of 
the system  may be partitioned into equivalence 
classes, by exploiting natural symmetries or sub- 
classes that may be present in the domain. Sec- 
ondly, the validation task can be partitioned by 
separately validating requirements that are known 
to be independent from one another.  Validation  of 
each requirement in isolation should traverse less 
of the overall state space than all of the require- 
ments  taken  together.  In either case, detail that is 
not  germane to each validation task can be tempo- 
rarily  removed from the model. We will illustrate 
each of these approaches below. 

For  the  DRS system, we partitioned the func- 
tional behavior  by separating out the classes of 
fault that can occur. The requirements include a 
simplifying assumption that facilitated this parti- 
tioning: 

Fault protection shall be  designed assum- 
ing only  one fault  occurs at a time, and 
that a subsequent fault  will  occur no ear- 
lier than the response  completion  time for 
the first  fault, and that multiple detections 
occurring within the  response  time  are 
symptoms of the original fault. 
The requirements identify 5 classes of faults 

that can occur on the spacecraft. Accordingly, the 
Mark  and Rollback process can be partitioned into 
five equivalence classes. Each can be treated inde- 
pendently of the others, significantly reducing the 
size of the overall state space to be checked  by the 
validation process. We also exploited the symme- 
try  between the redundant processors running the 
online and the prime strings, by recognizing that 
either string could run on either processor. 

1. SFF Execution Non-UV Trip 
2. Online Fault 
3. Peripheral Interfering Fault 
4. Prime Fault 
5. SFP Under-Voltage Trip 

In the first three cases, the Prime String will 
handle the fault, while  both strings suspend execu- 
tion of the critical sequence. In case 4, the fault is 

The five fault classes are as follows: 

in the prime string, and the online string will take 
over. The online string then becomes prime.  In the 
final case, the fault could be anywhere, so either 
processor may end up as prime. In all cases, once 
the fault protection  response is complete, the criti- 
cal sequence should  be  resumed from the last aged 
markpoint, by  whichever processor is now  prime. 

Equivalence class 1 contains the fundamental 
mark and rollback scenario common to the other 
classes during normal operation and it has less 
structure, in that it executes the smallest subset of 
states in the 5 partitions considered above. We 
therefore used this as the first validation exercise. 
We will concentrate only  on this class for the re- 
mainder of the paper.  It  will be seen that validation 
of this class has implications for the other re- 
quirements classes as well. We proceed first by 
removing all states in the statecharts that do not 
contribute to the mark  and rollback process. The 
resulting states are, in fact, those shown  in figures 
1 and 2. 

The prime string now contains 7 states and the 
online string 5 states. If  we assume once again  that 
as a minimum  again each state can be implemented 
with 4 substates, then these two elements contrib- 
ute 

47 x 45 = 16,777,216 states. 
The overall state space can be further reduced 

by ignoring the  CM  and  CS flags. By abstracting 
these two flags away  we  will be checking only the 
fundamental mark  and  rollback process that de- 
pends upon the SFP flag and the relative position 
of the markpoint  with respect to critical sequence 
execution time. If we  want to learn about any  pos- 
sible effects of the CS  and the CM flags they  will 
have to be inserted back into the model  at  some 
point. If the state space becomes too large, a non- 
exhaustive search option would  then have to be 
used. 

A further strategy for reducing the state space 
is to reduce the complexity of the input data. The 
model can be  validated  on the simplest possible 
test runs, and  then if no errors are uncovered, the 
size of the dataset can  be increased gradually.  In 
this case, the length of the critical sequence can be 
considered input data. A minimal critical sequence 
would contain the smallest number of markpoints 
possible. A critical sequence containing 3 mark- 
points was chosen for the initial exercise, as it 
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contained sufficient complexity to determine all 
possible combinations of fault occurrence and 
rollback. 

Finally, by removing the states that are not 
executed in fault class 1, the state space was  re- 
duced to an estimated: 

(4 prime)4 x (3 x 2 rendezvous packet) x (4 
online)3 = 98,304 states 

Now adding an extra flag for the presence of a 
fault doubles this to 196,608 states. This is still a 
manageable state space for the Spin tool. 
4.4 Validation of Case 1 

A SFP Execution Non-UV Trip is a spacecraft 
fault that is outside of the DRS system per se. 
These correspond to the type  covered  by partition 
1 in this case study. In this case the prime string is 
given the task of repairing the fault. The prime 
string would set the SFP flag to 1 to indicate a fault 
operation is in progress; stop the running critical 
sequence; and enter the SFP Active state to repair 
the fault (see Figure 1). The STB would still be 
transmitted to the online string once per second. 
That is, since the fault is outside of the prime 
string, its ability to function has  not  been impaired. 
Having received the STB, the online string will 
cease running its copy  of the critical sequence and 
transition to the Fault Idle state, waiting there until 
it receives an  STB  message indicating that the fault 
has been cleared. Once the prime string has  re- 
paired the fault it sets its SFP flag to zero and en- 
ters the Fault Idle state in preparation for resuming 
the critical sequence. At this point it rolls back to 
the last valid  (aged) markpoint; and resumes exe- 
cuting its copy of the critical sequence at this loca- 
tion. When the online string sees an STB message 
indicating that the SFP flag  is 0, it enters the 
SEQUENCE CRITICAL state resuming execution 
of its copy of the critical sequence at the aged 
broadcast markpoint. 

The first step in the validation is to develop 
Linear Temporal Formulae representing the re- 
quirements to be validated. Each LTL formula is 
then incorporated into the resulting Spin model as 
a "never" clause. Details of the validation method 
are described in  Appendix  A. 

To check that the desired fault tolerance is 
achieved, three separate functional requirements 
need to be validated in each string: 

R1. If a fault occurs when the last markpoint  was 
at the start of the program, the prime string 
shall roll back to the start regardless of  how 
much  time  has  expired since the program 
started running. 

R2. If a fault occurs when the time t following the 
last markpoint  was less than 3 seconds and the 
last markpoint  was  not  at the start of the pro- 
gram, the prime string shall roll back to the 
next previous markpoint. That is, do not use 
the markpoint that has  not  yet  been  properly 
aged, even though it has  been encountered in 
the execution of the current critical sequence. 

R3. If a fault occurs when the time t following the 
last markpoint  was greater than or equal to 3 
seconds the prime string shall roll back to the 
last valid  aged  markpoint. 
Requirements R4, R5,  and  R6 express the 

same three requirements for the online string. 
These can all be expressed as liveness conditions; 
they specify an  action  that  must  take place now or 
in the future. Symbolically, the LTL formulae rep- 
resenting these conditions have the form: 

OPA  Wp-,Oq) 
Where p is the occurrence of a fault, and q is 

the correct response. 0 and 0 are the temporal 
logic operators 'eventually' and 'always'. Ox 
means  at  some future state x will be true. Ux 
means the x is true in the current state and in all 
future states. The formula expresses the condition 
that eventually a fault (p) does occur,  and that it is 
always true that when it occurs,  at  some  point  in 
the future the correct rollback operation (4) will 
occur. 

Note that strictly speaking, our validation of 
the requirements only  involves the latter part of 
this formula, i.e.  O(p + 0 q), as we are checking 
that the correct rollback eventually occurs in re- 
sponse to a fault. However, this is trivially true if 
no faults ever occur (i.e. if p is never true). Hence 
we add the condition Op to check that our fault in- 
jection model does indeed inject this type of fault. 
This removes the possibility of false positives 
during the validation exercise. 

The LTL equivalent of requirement R l  is as 
follows: 

OPA  O(p+Oq) (R1) 
where p = (SFP = l)A(markpoint = start) 
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and q = (PC = markpoint)r\(SFP = 0) 
Where markpoint is the default markpoint  ad- 

dress of the beginning of the sequence; PC is the 
critical sequence machine program counter; and 
start is the address of the beginning of the critical 
sequence program.  Note that requirement R1  said 
nothing about how quickly the rollback should oc- 
cur,  and neither does our formalization, as we have 
not said anything about the intervening states be- 
tween the fault, p,  and the rollback, q. We could 
define further temporal formulae to investigate 
such concerns at a later stage in the analysis. 

Requirement R2 becomes: 
OrA  O(r+Os) (R2) 

where r = (t < ~)A(SFP = l)A(mp-current # start) 
and s = (PC = mp-next-previous)A(SFP = 0) 

and R3 becomes: 
O U A  U(U+oV) (R3) 

where U= 

(t>3)~(SFP=1)~(mp_current=mp_ge_three_sec) 
and v = (PC = mp-current)A(SFP = 0) 

Where t is time in seconds since the last en- 
countered markpoint; here  mp-current represents 
the current markpoint  and  mp-previous represents 
the markpoint preceding mp-current; each of these 
represents the case where less than three seconds 
have expired. mp_ge-three-sec represents the 
markpoint for the case where three or more  sec- 
onds have expired since the last encounter of a 
markpoint in the sequence. 

Three analogous requirements are needed for 
the online string, using its copies of SFP and  Mark: 

Oh/\   O(h+Oi) (R4) 
o j A U ( i + o k )  (R5) 
0 1 ~  o(l+Om) (R6) 

Each additional LTL formula that is added to 
the model adds more complexity, making runtimes 
and memory consumption very  large. The best way 
to circumvent this problem is to validate each 
functional requirement separately. For example, we 
can check that requirement Rl  is satisfied without 
looking at R2 and R3 because  they are independent 
requirements. However,  requirement R1 is not  in- 
dependent of R4. This non-orthogonality requires 
that both be validated in the same run. Semanti- 
cally, this means that when rollback takes place in 
the prime string under the condition that we are at 
the start of the program,  then the same rollback 

must  be also shown to take place  in the online 
string. The derivation in  Appendix A shows that a 
jointly operational Buchi Automaton can be pro- 
duced from separate LTL formula by writing down 
the logical conjunction of the formulae and  then 
converting the result to an equivalent automaton. 
The conversion itself is done with the Spin option - 
f and is automatic, although the user may  want to 
apply a certain amount of optimization  on the re- 
sult to make the resulting automaton  more effi- 
cient. To keep the resulting system at a minimum, 
the automaton for rollback to the beginning of the 
program is derived from R1  and  R4: 

o p ~  O(p+Oq)AOhA  O(h+Oi) (R7) 
where p,  q, h and i are as defined above. 
Analogous minimal LTL formulae were de- 

rived for the other 3 cases and  they  were  imple- 
mented  in the model. 

Additional validation can be performed  by de- 
fining further properties that should  hold  in the 
model.  For example, we could check that aged 
markpoints are always in  agreement  with each 
other. This condition can be stated by using the 
safety condition that the aged  markpoint x in the 
prime string never disagree with the aged  broad- 
cast  markpoint y in the online string. The corre- 
sponding safety condition would  be 

U(x = y) (R8) 
Additionally, assertions were  used throughout 

the model to confirm that the model  had the de- 
sired behavior. 
5 Results 

Five different fault categories were identified 
to test the model. The results reported here cover 
the first of these categories only (partition l), but 
we do discuss implications for the other five fault 
categories. Fault category 1 refers to the behavior 
of the DRS  prime string in the face of a SFP Exe- 
cution  Non-UV Trip. 

Six separate requirements on the rollback 
scheme  were validated, as described in section 4.4. 
Each  of the six requirements involved exhaustive 
examination of approximately 100,000 states in the 
model,  and  took about 30 seconds each. The re- 
sponse  and  recovery  in each case was to the injec- 
tion of a non-UV trip fault in all possible ways, 
based  on the model. Three of the 6 runs for the 6 
requirements failed in the verification. 
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We define a fault as an element in a system 
that that doesn’t perform to specifications. An 
anomaly is incorrect information appearing in the 
system that is the manifestation of the fault. Three 
anomalies were identified and are described below. 
The first two are errors in the requirements that we 
thought  might  not occur in the DRS implementa- 
tion. The third was a discrepancy in the detailed 
requirements that could allow for erroneous be- 
havior of the implemented  system. 

1.  Depending on how error detection and repair is 
handled, it may  be possible for the prime sys- 
tem to detect and to repair an intermittent error 
within one second, and  then consequently not 
broadcast this state to the online system. This 
would  mean that the online system would not 
receive notice of the fault; therefore, it would 
continue executing its copy of the critical se- 
quence. Repeated occurrence of this scenario 
would cause the online system to get ahead  of 
the prime system, possibly to the point where 
the online system would complete its copy  of 
the sequence. If the prime system subsequently 
fails, the online system may  not  have a mark- 
point to roll back to. Details are as follows. 
The synchronization between the prime and 
online systems is at  one-second boundaries. 
The STB handshake in interrupt five will not 
report the occurrence of a fault that occurred 
after the beginning of the one-second time 
frame. However, if the fault is repaired before 
the start of the next one-second time frame, the 
prime string will not  report  it  in the STB  at the 
next handshake either. The result is that the 
online system is now one second ahead of the 
prime system. Figure 3 shows one sequence of 
events in this scenario. Inspection of the figure 
shows that repeated injection of this type of 
intermittent fault effectively stalls the prime 
execution while the online system will eventu- 
ally complete executing its copy of the se- 
quence. This anomaly is due entirely to the 
ordering of processing described in the design. 
Figure 3 shows a detailed example of  how this 
condition could develop after the detection and 
repair of a single fault in the prime string. The 
three aging buffers in the prime string and the 
two buffers in the online string show a new 

mark  point (location 6) having been  aged  by 
one  second  when the fast-fault-repair scenario 
occurs in the prime  system. The correct roll- 
back  point is that given for the prime string 
since it controls the space craft bus. It is shown 
as location 1 at the bottom of the prime  aging 
buffer. The anomaly or resulting incorrect in- 
formation  in the system is the mark  point 
identified as location 6 at the bottom of the 
online aging buffer. 

pQPrime] 
Fault occurs in pr im 
and is repaired in same 
second. Prime freezes 

PC aging for that second; 
Online does not stop 
executing since STB 
value it picks up at the 
end of the second is 

-FPresettoo 

PC 

I I  Prime Failure here 
would cause Online to - 

I bcmk= 6 SFP = 0 - tutuwxecntionpnint 
rnllback to an invalid 

pwl Note thapcin Online 
is also ahead of the 
primepcat this point Online Aging 

Prime 
Buffer Buffer Aging 

Figure 3: Anomaly One 

2. The second  anomaly depends upon  how faults 
are handled  at the end of a critical sequence. If 
a fault occurs in the prime system less than 
three seconds after the end of the critical se- 
quence is reached, it is not clear how the roll- 
back, if  any,  would be handled. The 
requirements specification did not designate 
the critical sequence end instruction as a 
markpoint.  Our validation run failed because 
our  model  assumed that once the critical se- 
quence completed, the online system returned 
to the Power  Up Idle state; accordingly there 
would  be no suspended critical sequence  to 
return to once the fault was corrected. If the 
fault were to bring the prime system down, the 
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online system may need  to roll back to the last 
aged markpoint. This anomaly is due  to a 
missing requirement. Figure 4 shows a detailed 
example of  how this condition could evolve. 
Both the aging buffers would  have  had  time to 
develop correct rollback  points  shown as loca- 
tion 9 in  both cases. However, the time se- 
quence following the dashed line indicates that 
each critical sequence would  have finished 
execution, therefore neither critical sequence 
would be available for follow-on  rollback after 
fault repair. In each case both critical se- 
quences terminated  and transitioned out of 
their execution state. In this instance the 
anomaly or incorrect information in the system 
is 1oss.of the critical sequence itself  and its as- 
sociated program counters and aging buffers. 

3. The third anomaly concerns the occurrence of 
a fault 2 seconds after a markpoint is encoun- 
tered  in the prime string. The prime  system 
freezes the aging function at n+2 seconds. 
Since faults that occurred in the previous  sec- 
ond are not broadcast to the online system  un- 
til the current second, the online system  will 
continue to execute, aging its markpoint  by 
one further second. At this point  the online 
system receives the SFP = 1 value  and  now 
both agers are frozen. Once the fault is re- 
paired, the both strings will roll back, but the 
online system will roll back to the newer 
markpoint. This would  not cause a problem  if 
the prime system then completes the critical 

sequence. However, if the online system 
should  subsequently  have to take over due to a 
prime failure - possibly associated with the 
(symptomatic) fault that was just processed, it 
could roll to an inappropriate block of code. 
This problem  would  not go away if the aging 
buffers  were  made deeper or shallower.  It 
would just occur at a different place since it is 
a consequence of the relative time difference 
between the two aging schemes. Figure 4 
shows a detailed example of  how this condi- 
tion  could develop. ' It  shows a fault occur- 
rence that freezes the prime ager  with  mark 
point 6 at the 2-second point. Subsequently the 
corresponding online string ager ages its 6 by 
one extra second before receiving the STB 
message informing it of the occurrence of the 
prime fault. Accordingly, the anomaly or in- 
correct information  in the system resulting 
from this fault is that the 6 has  made it to the 
bottom of the online string aging buffer yield- 
ing an  invalid rollback point. The correct roll- 
back point is to location 1, the start of the 
critical sequence. 

6 Validation  of  the  Implementation 

We  have  subsequently validated the implementa- 
tion for the presence of the three design anomalies. 
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For this purpose we used a special purpose space- 
craft simulator called the High Speed Simulator 
(HSS) [16,17]. The simulator uses code identical’ 
to the real spacecraft. However, it is decoupled 
from hardware and  telemetry. Accordingly, its use 
as a test vehicle  (1) is an accurate measure of sys- 
tem functionality and (2) it allows rapid turn- 
around  on test suite creation, execution, and 
reporting of results. 

The simulator allows test engineers to write test 
sequences for execution on the simulator.  Given 
the data structures present  in the spacecraft con- 
troller, a Tool  command language (Tcl) program is 
written  that orchestrates (1) the execution of the 
test sequence, (2) the extraction and printing of 
values of selected data attributes (3) the extraction 
and printing of  any  relevant  time stamps and (4) 
fault injection scenarios and their responces. 

6.1 Validation of the  Implementation 

The context here uses the term “prime system 
fault” to  mean the prime  system is responding to 
and repairing a fault that occurred in another part 
of the spacecraft. Additionally, the prime system 
must repair the fault before the sequence can be 
continued. 

6.2 Procedural  Steps 

We wanted to know if the software implementation 
contained the same anomalies as were found in the 
design. To determine this, we supplied the High 
Speed Simulator with a simple sequence program 
for execution. By injecting faults into the running 
sequence, the same problematic conditions would 
be set up in the implementation that were discov- 
ered by  design validation. Our earlier validation 
work derived the design anomalies from a three- 
step process. First, the prime system would stop 
running freezing its mark  point ager in response to 
a fault occurrence somewhere in the spacecraft. 
Second, the prime  system  would  load and begin 

execution of a fault recovery  program.  Finally, 
during its execution of the fault recovery  program, 
the prime system itself would fail. To affect this 
same scenarjo in the software implementation, the 
prime  system  was  commanded  to do a cold boot at 
execution points  in the implementation identical to 
those that caused the anomalies in the design  vali- 
dation. An operational online system considers the 
prime  system  cold  boot to be a prime  system fail- 
ure.  It reacts by becoming prime itself; taking  con- 
trol of the spacecraft bus; rolling back to the 
relevant earlier mark  point address if necessary; 
and resuming execution of the sequence  program. 
For example, the third anomaly found in the design 
validation process occurs when the prime  system 
fails after encountering a fault scenario that freezes 
its mark  point  at  second two in the aging process. 
This results in the new  prime  system rolling back 
to  an inappropriate address due to a timing prob- 
lem  in the design. Accordingly, cold booting the 
prime system when it has  aged its mark  point  by 
two seconds has the same effect as the two step 
process considered in the design case. 

Detection of the presence of design anomalies in 
the implementation  was done by selecting data 
structures for output identical to those used  in the 
design case. These output data values  taken  to- 
gether  at  any execution cycle represent the state of 
the implementation  at a particular point  in time. As 
the implementation executes, this ‘state  vector’ de- 
scribes a finite state machine that represents the 
implementation. This finite state machine is an 
abstracted finite state machine since it doesn’t in- 
clude all variables, only the ones considered rele- 
vant to the current validation. If a corresponding 
design  anomaly is itself  present  in the implemen- 
tation, the implementations’ abstracted state vector 
will go through  an equivalent sequence to that 
found  in the design  validation done earlier. In this 
case the work  proceeded by outputting each state 
vector for the executing implementation. The out- 
put list was  then  manually  examined line by line to 
look for the presence of anomaly states. 

The input sequence program that was incorporated 
into the HSS Tcl interface program  to check for the 
presence of anomalies in  the  implementation is 
shown  in Figure 6. 
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IP 
800 
803 
805 
807 
809 
8Ob 
80d 
80f 
81  1 
813 
815 
817 
819 
81b 
81d 
81f 
821 
823 
825 

Mnemonic 
BEGIN 
NOP 
NOP 
NOP 
NOP 
NOP 
MARK 
NOP 
NOP 
NOP 
NOP 
NOP 
MARK 
NOP 
NOP 
NOP 
NOP 
NOP 
END 

Figure 6 Sequence  Validation  Sequence 

To keep the analysis as straight forward as possi- 
ble, each instruction was executed on  one-second 
boundaries. A HSS Tcl interface program was 
written to generate the output state vector sequence 
of the abstracted implementation state machine. 
Schematically, the overall process is shown in Fig- 
ure 7. 

Commands  for 

(Sequence 
For i nspection) 

I Figure 7: Implementation  Abstracted  State  Machine 

The implementation was  validated  at this point by 
simply looking at the results of the simulation by 

hand  and recognizing that a design  anomaly  was or 
was  not  reproduced  in the output. This means 
visually examining the output sequence labeled 
“Abstracted State Vectors” to check the rollback 
process functionality. Two of the three anomalies 
found  in the design validation were present  in the 
implementation. A brief  summary  of the results 
follows. 

6.3 Implementation  Anomaly  Validation  Re- 
sults 

The first anomaly resulted from repetitive errors 
that caused the prime  and the online system to get 
out of synchronization. Our design anomaly fault 
scenario required a series of prime-fault-repair se- 
quences each of one-second duration or less. We 
did not see the first anomaly  in the system. Further 
investigation  with system engineers revealed that 
all faults take  at least several minutes to  repair. 
Therefore, repair time was extended so that anom- 
aly  one  would  not be seen. 

The second  anomaly occurs when a fault occurs 
less than three seconds after the sequence ends. In 
this case, there is no rollback. That is, once the 
sequence  has  been completed there is no rollback 
in response to  an error injected inside the three- 
second-rollback  window. Therefore, there is no 
guarantee that all instructions at the end of the se- 
quence would  have  been carried out by the space- 
craft. Accordingly,  on this basis, the last 
instruction in the program should  have  been identi- 
fied as a rollback point. Our technique demon- 
strated that the second anomaly  was present in the 
implementation. 

The third anomaly results from a fault that brings 
the prime system down  when its aging buffer  con- 
tains a mark  point rollback address that has  been 
aged  by  two seconds. According to our model 
checking validation, this information  would  not  get 
to the online system until the following second, 
thereby causing its two deep online buffer to age 
its rollback address by  an additional second. Con- 
sequently, its rollback address would be consistent 
with a three-second delay following a mark  point 
when  only two seconds had elapsed since the 
prime string had executed its last instruction. 
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Prime system failure was  again caused by cold 
booting the prime string at the point it  had  aged its 
mark  point  by two seconds. The subsequent roll- 
back  in the new prime system did not  match the 
old  prime’s rollback address. Accordingly, our 
technique demonstrated that the third anomaly  was 
present  in the implementation. 

The cold  boot process is equivalent to the injection 
of a single fault that brings the prime system down. 
This process causes the overall spacecraft control- 
ler to fail to conform to requirements since control 
in the new prime system rolls back to an inappro- 
priate location. Therefore, our technique also dem- 
onstrated that the overall system made  up of prime 
and backup systems was  not single fault tolerant. 

All of these results were  taken  with respect to the 
spacecraft software as it existed on the High Speed 
Simulator. 

7 Discussion 
The analysis technique used  in this study is 

relatively  new,  and  was  not sufficiently mature just 
a few years ago to enable its use. The DRS oper- 
ates as a communication system that must be ro- 
bust under the incidence of arbitrary faults. The 
validation of requirements for such fault tolerant 
systems is particularly hard, because of the non- 
determinacy introduced by the fault behavior. 
Holzmann [lo] points out that even for relatively 
simple communication protocols: 

“It is almost impossible to manually verify 
correctness requirements such as the ones 
discussed, no matter how diligent or  disci- 
plined the designer. The behavior of even 
simple protocol systems can be of a com- 
plexity that no designer can be expected to 
assess  accurately.” 
Worse still, the desired validation cannot be 

established through rigorous testing of the imple- 
mentation either. The complexity of the communi- 
cation system, together with the non-deterministic 
occurrence of faults makes exhaustive testing in- 
feasible. 

The use of model checkers opens up  new  pos- 
sibilities for validating such systems. In principle, 
exhaustive checking of the requirements model is 
also infeasible. However,  by exploiting the struc- 

ture of the state space, a partial model can be ex- 
tracted that is sufficient for the validation exercise. 
The reduction in the size of the state space was 
critical in this case study,  and  was achieved by  di- 
viding the requirements into 5 partitions and ab- 
stracting away extraneous detail. The original 
(reduced) estimate of the size of the model state 
space  was  over 100 million states. Although the 
estimate after simplification was  between  about 
62,000 and 800,000 states, the actual number of 
states in the model  was just over 100,000 states, 
allowing the validation of each of the six require- 
ments  in partition 1 to be completed in 30 seconds. 

The complexity  of the validation exercise was 
also reduced  by validating requirements individu- 
ally.  It is possible to combine requirements (and 
domain properties), as described in Appendix  A, 
so that they  can be checked in a single validation 
run. However, doing so often increases the com- 
plexity of the model  beyond the limit of current 
model checking technology. Hence, we  only  com- 
bine requirements in this way  when  they are 
known or suspected not  to be independent. 

It is important to note that with this approach, 
any claims of completeness are sacrificed; we are 
only  performing partial validation of partial speci- 
fications. Hence, the focus is not  on  proving  cor- 
rectness, but  on revealing errors [13]. We have 
shown  in the case study that the approach is capa- 
ble  of finding subtle errors that are otherwise al- 
most impossible to detect. If we did not find any 
errors, that would  not establish correctness, but  it 
does provide a higher level of assurance than is 
otherwise possible. 

8 Summary  and  Conclusions 
We have demonstrated through a case study 

how fault tolerance requirements can be validated 
through non-deterministic model checking. The 
system described in the case study  used a mark  and 
rollback scheme to implement fault tolerance. The 
system  has to complete high priority tasks called 
critical sequences efficiently and at the same time 
respond  to  and repair faults. To  meet this require- 
ment,  hard  rollback points (markpoints) are em- 
bedded  in the critical sequence code so that 
completed subtasks would  not have to be repeated 
when fault conditions force the executing critical 
sequence to  suspend operation to service the fault. 
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Faults occurring within subtasks are repaired and 
rollback is then done to the start of the last uncom- 
pleted subtask. A hot  backup (the ‘online string’) is 
operational synchronously to increase reliability 
and  availability. 

The validation scheme described in this paper 
was  implemented as a Spin model  with three key 
components. First, the model contains an underly- 
ing operating system (executive) that contains a 
checkpointing scheme referred to  as the mark  and 
rollback process, which  was  modeled deterministi- 
cally. Second, a generalized critical sequence was 
chosen to be executed by the model operating sys- 
tem to make it possible for requirements  and de- 
sign errors to surface. Finally, a fault injection 
process  was  used to non-deterministically inject a 
single fault into the system model. The validation 
system  then attempted to execute the critical se- 
quence and to recover from all possible injections 
of a single fault into the executing critical se- 
quence. In this way three anomalies  were discov- 
ered. 

The model  was  reduced  to a feasible size for 
validation  by abstracting away  unnecessary detail 
leaving behind a partial specification. The func- 
tional rollback requirement was elaborated into 6 
separate but dependent requirements. A Linear 
Temporal Logic scheme  was developed to validate 
three pairs of coupled requirements over the dually 
redundant system. This procedure allowed the 
rollback requirement in the prime or control sys- 
tem to be validated together with its coupled an- 
cillary mirror rollback requirement in the online 
(hot backup) system. In this way,  the study showed 
that a partial specification for a complex spacecraft 
controller can be effectively validated  within the 
framework of the remaining requirements. 

Validating all six rollback requirements in one 
validation  run  would  have  added a large  amount of 
execution time to the validation. This is because 
the resulting LTL  automaton that gets coupled to 
the model contributes exponentially to the size of 
the model.  Accordingly,  by partitioning the over- 
all rollback requirements into three equivalence 
classes with two rollback requirements each sig- 
nificantly reduced the model  in  size (state space) 
and consequently in execution time as well. As a 
byproduct, the analysis of the results was  much 

more straightforward since one type of rollback 
could be analyzed  at a time. 
Having  completed the work  of finding the three 
design errors using model checking, we then  vali- 
dated the software implementation for the presence 
of  ‘the three anomalies found in the design. Using a 
spacecraft simulator running code identical to the 
real spacecraft, two of the three design  anomalies 
were found to  be  present  in the implementation. 
The method is efficient since the design state space 
search  problem is generally a relatively fast proc- 
ess. Whereas, the state space of a software imple- 
mentation is potentially too large to search 
exhaustively or even reliably  partially.  Having 
found  design errors by rapid search, efficient im- 
plementation validation can be done by checking 
for the presence of a small number of individual 
design  anomalies 

We plan  to extend the application of the methodol- 
ogy demonstrated here to developmental efforts 
over the software lifecycle using partial specifica- 
tions and their associated co-evolving prototype 
implementations. We are exploring two different 
approaches. The first approach works  by instru- 
menting a partial or complete implementation  in 
order to detect the presence of paths  through the 
state space that correspond to the satisfaction of 
functional requirements. The resulting log files are 
then  transformed into a set of traces to be executed 
by a model checker to validate that the implemen- 
tation preserves the key properties. The functional 
requirements in the system are validated  by ex- 
pressing them as Linear Temporal  Logic  proposi- 
tions that are translated into an appropriate 
automata type supported by the particular model 
checker in  use. Then, by traversing the annotated 
log files encapsulated as processes over the model, 
the functional requirements are validated in  the 
usual way  by the model checker as discussed by 
Holzmann [2]. 

The second approach is to use the model 
checker to generate runtime monitors that may  be 
embedded in the implementation. In this approach, 
we express correctness properties as LTL, formu- 
lae, and use Spin to generate a C-encoded  proce- 
dure from the formula, which is then included as a 
run-time  monitor inside the growing implementa- 
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tion. The implementation is then instrumented, by 
hand, to inform the monitor at the occurrence of 
the events that the monitor is interested in, namely 
those events that can cause a change in the truth- 
value of the correctness property. The monitor 
would  complain if it ever saw  an execution that 
violated a stated correctness property. 

This first of these approaches has  been  suc- 
cessfully used on a pilot project to validate a com- 
plex  communications protocol called RMP [ 141. 
Two  teams consisting of an Independent Verifica- 
tion  and  Validation (IV&V) team and a software 
development team were used. Both the develop- 
ment  team  and the IV&V  teams  worked from an 
evolving partial specification. While the develop- 
ment  team  was responsible for the implementation, 
it  was the responsibility of the IV&V team to  apply 
a modeling  scheme to check that the evolving 
specification and the implementation were consis- 
tent with  each  other. The IV&V team then  used the 
model checker to validate the requirements. In this 
way  when errors in the implementation surfaced 
they  could be brought up to date with the specifi- 
cation; and if the specification were in error the 
implementation could be used to update the speci- 
fication. Each derived or added  requirement 
would, of course, then be incrementally validated 
and  used to assist in driving the specification for- 
ward  and so on. By working  in tandem in this way, 
costly backtracking errors are prevented. The re- 
sult was a saving in operational efficiency and 
lower maintenance costs due to good  underlying 
design. 
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10 Appendix  A:  Linear  Temporal  Logic  Back- 
ground 

The SpinPROMELA modeling scheme de- 
rives much  of its power from its ability to incorpo- 
rate formal theorem proving elements into its 
search schemes. Buchi [14] discovered the funda- 
mental relationship between finite automata and 
the second-order monadic calculi. This innovation 
made it possible to incorporate Linear Temporal 
Logic (LTL) assertions as components of computer 
modeling schemes. 

A Buchi automaton is a non-deterministic Fi- 
nite State Machine (FSM) A = (X, 3, So, 3). C 
is the input alphabet, S i s  the set of states, So the 

set of initial states, and 3 is the set of accepting 
states. 3 E S x  X x S i s  the transition relation. If 
(s, O, SI) E 3 then A can  move from s to s’ upon 
reading O. An input word is an infinite sequence 
O= 01, 02, 03, . .: ,Oi E X, while a run, r,  over o is 
an infinite sequence so SI LL  . . ., where 
SO E SO, ( S i ,  Oi+l, si+l) E 3, i = 0, 1, .... Arun, r, 
is said to be accepting iff there exists a state g E 3 
such that g appears infinitely often  in r. The lan- 
guage 4 A )  is the set of all input words, O, such 
that A has  an accepting run over O. 

Let f i  be an  LTL assertion corresponding to a 
system  requirement to be validated that generates 
automaton  Ai.  Given n Buchi automata of the form 
Ai = (Xi, 3, 3 i ,  Soi, 2), they are closed under the 
operation of intersection. Their intersection n :=, A i 

accordingly is a Buchi automaton, and it accepts 
the language n :=, (A ’ )  . The LTL formula that gen- 
erates this automaton  has the form 

f = X f ,  (1) 
I =1 

Equation (1) allows multiple LTL formulae to 
be concatenated such that the resulting automaton 
will  preserve the characteristics of the  language 
accepted  by each automaton  were it to  be imple- 
mented  in isolation. This means that the set of all 
input words, O, that were  recognized  by each 
automaton  Ai  in isolation will also be  recognized 
by the composite automaton n (A c )  . 

By incorporating the Finite State Machine 
(FSM) representation of the formal properties to be 
validated  by the model, the model can be  routinely 
checked for the presence or the absence of the de- 
sired characteristics. 

The SpinPROMELA system has  an  LTL 
translator that can produce the corresponding 
Biichi  automaton from an input requirement ex- 
pressed as an  LTL formula. The Spin modeling 
system checks to see that finite state program .p 
satisfies the temporal logic formula f .  First, the 
global state graph of P i s  computed. Second, the 
Buchi automaton is constructed for 11 A+ . 
Third, the synchronous product P x A- , ,  is com- 
puted.  Finally, the validation run is performed  on p 
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x A,, For each state transition in Spin checks 
to see if a corresponding transition in A,, is pos- 
sible. Once one of the accepting states of A- , ,  has 
been entered, it must be shown  that that state is 
reachable from itself. When this happens, A,, will 
have  been  shown to have recognized a string (3 

from the language generated from the original LTL 
formula 7 ,  For efficiency, Spin executes the 3 
steps in 1 pass. At this point a trail file can be 
written showing the sequence of state transitions in 
Pthat gave rise to the accepting state in A,, This 
file can then be annotated and  run  as a test case 
against the implementation. 
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